Specificity of an automated Anti-SARS-CoV-2 immunoassay in COVID-19 pre-pandemic cohorts

Elena Riester¹, Beda Krieter², Peter Findeisen³, Michael Laimighofer⁴, Kathrin Schoenfeld⁴, Tina Laengin⁴, Christoph Niederhauser^{5,6}

¹Labor Augsburg MVZ GmbH, Augsburg, Germany; ²Red Cross Blood Transfusion Service West GmbH, Central Laboratory Hagen, Hagen, Germany; ³MVZ Labor Limbach, Heidelberg, Germany; ⁴Roche Diagnostics GmbH, Penzberg, Germany; ⁵Interregionale Blood Transfusion Swiss Red Cross, Bern, Switzerland; ⁶Institute for Infectious Diseases (IFIK), University of Bern, Bern, Switzerland

Conflicts of interest: ER: Received speaker's honorarium from Roche; BK: No COIs to disclose; PF: No COIs to disclose; ML: Employee of Roche Diagnostics GmbH; KS: Employee of Roche Diagnostics GmbH; owner of shares in Roche; TL: Employee of Roche Diagnostics GmbH; CN: No COIs to disclose.

- The COVID-19 pandemic has prompted the launch of several different serological assays. Reliable information regarding the relative performance of these assays in a wide range of settings is urgently needed.
- Research into antibody responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) – the infectious agent responsible for COVID-19 – has revealed information about the timing of seroconversion, a critical consideration in serological testing.
 - Evidence suggests that immunoglobulin M (IgM) antibodies are detectable within 5 days of symptom onset, immunoglobulin G (IgG) antibodies within 5–14 days,^{1–3} and immunoglobulin A (IgA) antibodies after approximately 3–6 days.^{2,4} The chronological order in which IgM and IgG antibodies develop appears to be highly variable, as are antibody levels.^{3,5-7}
 - This supports the need for accurate serological tests for the detection of high-affinity (i.e. late-onset/mature) antibodies to SARS-CoV-2.
- The Elecsys[®] Anti-SARS-CoV-2 immunoassay (Roche Diagnostics International Ltd) was developed to provide an accurate and reliable method for detecting antibodies to SARS-CoV-2.
- This in vitro qualitative electrochemiluminescence assay detects various antibodies (including IgG) to SARS-CoV-2 in human serum and plasma and is intended for use on cobas e immunoassay analysers.^{8,9}
- The immunoassay uses an in-solution double-antigen sandwich test principle, with a recombinant protein representing the nucleocapsid antigen of SARS-CoV-2.^{8,9}

• To evaluate the specificity of the Elecsys Anti-SARS-CoV-2 immunoassay using pre-pandemic samples collected from five sites across Germany, Austria and Switzerland.

METHODS

- This retrospective, non-interventional study was conducted at five sites: one site (Innsbruck [Austria]) provided serum samples and four sites (Augsburg, Hagen, Heidelberg [Germany] and Bern [Switzerland]) provided serum and/or plasma samples and performed testing using the cobas e 801 analyser (Roche Diagnostics International Ltd).
- Samples were anonymised, frozen, residual serum and/or plasma specimens from blood donors or routine diagnostic testing obtained prior to September 2019, and were therefore assumed negative for SARS-CoV-2-specific antibodies. Specimens included pregnancy screening and paediatric samples.
- Specificity of the Elecsys Anti-SARS-CoV-2 immunoassay was assessed using the cobas e 801 analyser, which compared the electrochemiluminescence signal obtained from the reaction product of the sample with the signal of the cut-off value, previously obtained by calibration.
- Point estimates and 95% confidence intervals were calculated.

1. Liu W, et al. J Clin Microbiol 2020;58:e00461–20; 2. Guo L, et al. Clin Infect Dis 2020;71:778–85; 3. To KK-W, et al. Lancet Infect Dis 2020;20:565–74; 4. Amanat F, et al. Nat Med 2020;26:1033–6; 5. Long QX, et al. Nat Med 2020;26:845–8; 6. Zhao J, et al. Clin Infect Dis 2020; doi: 10.1093/cid/ciaa344 [online ahead of print]; 7. Okba NMA, et al. Emerg Infect Dis 2020;26:1478–88; 8. Elecsys[®] Anti-SARS-CoV-2. Package Insert 2020-04, V1.0; 9. Roche Diagnostics; Elecsys[®] Anti-SARS-CoV-2 Immunoassay for the qualitative detection of antibodies against SARS-CoV-2; Factsheet, 2020.

*Samples from Innsbruck were analysed at Augsburg.

CI, confidence interval; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

iii RESULTS

- A total of 9575 samples presumed negative for SARS-CoV-2 antibodies were analysed.
- Specificity of the Elecsys Anti-SARS-CoV-2 immunoassay for the overall sample cohort and by analysis group are shown in Table 1.
- Using an assay cut-off index of 1.0 resulted in an overall specificity of 99.85% in samples obtained across all five sites.
- Among 6714 serum and/or plasma samples from blood donors and 2861 serum and/or plasma samples from routine diagnostic samples, specificity was 99.82% and 99.93%, respectively.
- Among 2256 samples from pregnant women, specificity was 99.91% and among 205 paediatric samples, specificity was 100%.
- Across Groups A (blood donors) and B (routine diagnostic specimens), a total of 14 reactive samples were detected (Group A, n=12; Group B, n=2).

 Table 1. Summary of specificity results for the Elecsys Anti-SARS-CoV-2 immunoassay in blood donor samples and routine diagnostic specimens

Group	Sample cohort	No. samples tested	No. samples reactive	No. samples non-reactive	Specificity, % (95% Cl)
Groups A and B	All	9575	14	9561	99.85 (99.75-99.92)
Group A Blood donors	Austria (Innsbruck), flu season*	1048	5	1043	99.52 (98.89-99.84)
	Germany (Hagen)	2625	2	2623	99.92 (99.73-99.99)
	Switzerland (Bern)	3041	5	3036	99.84 (99.62-99.95)
	Switzerland (Bern), no flu season	2003	2	2001	99.90 (99.64–99.99)
	Switzerland (Bern), flu season	1038	3	1035	99.71 (99.16–99.94)
	All	6714	12	6702	99.82 (99.69-99.91)
Group B Routine diagnostic testing	Germany (Augsburg), diagnostic routine	400	0	400	100 (99.08-100)
	Germany (Augsburg and Heidelberg), pregnancy	2256	2	2254	99.91 (99.68-99.99)
	Germany (Augsburg), pregnancy	1498	2	1496	99.87 (99.52–99.98)
	Germany (Heidelberg), pregnancy	758	0	758	100 (99.51–100)
	Germany (Heidelberg), paediatrics	205	0	205	100 (98.22-100)
	All	2861	2	2859	99.93 (99.75-99.99)

iii RESULTS (cont)

The COI distribution across samples is shown in **Figure 1**. Only 14 samples had a COI ≥1 (pre-specified cut-off for reactivity).

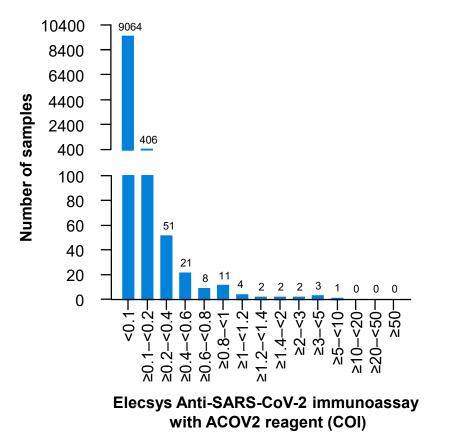


Figure 1. Cut-off index (COI) distribution of patient samples (n=9575)

ACKNOWLEDGEMENTS

This study was funded by Roche Diagnostics GmbH (Mannheim, Germany). Third-party medical writing support, under the direction of the authors, was provided by Sophie Lavelle (Gardiner-Caldwell Communications, Macclesfield, UK) and was funded by Roche Diagnostics International Ltd (Rotkreuz, Switzerland). COBAS, COBAS E and ELECSYS are trademarks of Roche.

⊘ CONCLUSIONS

The performance of SARS-CoV-2 antibody assays in general is of high importance for public health and may affect political decision-making in pandemic management.

2

3

This study generated additional data on the performance of the Elecsys Anti-SARS-CoV-2 immunoassay and provided broader evidence on the very high specificity of the assay across various pre-pandemic cohort samples, including blood donors, pregnant women and paediatric populations.

Our findings support the use of the Elecsys Anti-SARS-CoV-2 immunoassay as a potential tool for determination of immune response following previous exposure to SARS-CoV-2 in the general population.

4